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ABSTRACT

The steady-state analysis of open or closed networks consisting
of n nodes interconnected by links over which mass flows is the
subject of this report. Formulas are derived which yield the
equilibrium mass balance at each node in terms of a set of speci-
fied parameters which characterize both nodes and links. The
solution is then gencralized to the case of a k-priority network of
interconnected nodes, either open or closed. Kk-priority systems
are solved recursively and formulas are given which determine delays
at each node for a fixed priori:y mass element in terms of known

parameters.
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INTRODUCTION

A dynamic model of a materials balance consisting of a system
of simultancous equations has three possible modes of behavior
as time incrcases. There may be unlimited increase or decreasc
of a variable; there may be attained constant levels of the
variables not depending upon time; or there may be oscillatory
solutions. Thus when the derivatives of the dependent variables
are set equal to zero, the roots of the resulting system of equa-
tions identify the combinations of values of the dependent
variables within which the steady-state combinations are a
subset, By steady state one means either the case in which the
dependent variables attain constant values independent of time
or the casc in which they yield fixed temporal averages. The
linear steady-state network model of an open systen referrved to
here can best be visualized in terms of a network flow diagran
containing several #odce or points of accumulution of "species,”
i.e.,, substances of some kind connccted by linkages over which
material transter occurs that is governced by physical Jaws or man-
made control rules or both., A basic governing principle in the
constructicn of the model which is true for deterministic casces
and for a wide varicty of cases in which the flows are governed

by stochastic rules [1]) 15 the following:



total means input rate to cell i

Q. volume of cell i

i
B; ~ mean delay time in cell i

= total mean output rate from cell i. 1)
A set of external sources é?i% and sinks iéi& identify those
inputs and outputs of substances which have the effect of forcing
exchanges among cells in such a way that a set of constant flows
across nodes results. In a steady-state condition the sum Eei
necessarily equals the sum Edi. One anticipates that this condi-
tion can be satisfied in which different combinations of mean flow
rates across nodes are possible and in fact it is shown below that
one can set independently the values of mean flow rate across a
fixed subset of nodes while satisfying the side conditimx{éi = Edi-

The solution one obtains is in terms of the constant ratios

which are the limiting values obtained by averaging the input rate
to node i over time from 0 to + «, Knowing the ratios T, and
cither the mean residence time Di or cell volume Di the remaining
quantitiy can be determined. The model can be used for identifying
feasible sets of external demands upon the network as well as
obtaining specific solutions. In application the nodes might
represent centers in which traffic ot some kind arrives and departs
after the occurrence of certain events at the node. The sinks
night also represent demund points for a commodity such as water

over a geographic area.

to



EQUATIONS OF MASS BALANCE

An open system differs from a closed system in that there arce
exogenecous sources which feed mass inio the system at one or morc
nodes at specified rates. In addition there arc exogeneous sinks
into which mass flows from certuin nodes at specified rates. If
the system is in a steady-state condition, the mass input ratc must
equal the mass output rate. A closed system is obtained if this
value is identically zero. A specification of the exogeneous
inputs e, and outputs di does not determine the flow rates %?i%
into nodes from strictly interngl eirculations within the system.
It does, however, restrict the set of possible combinations of
ui's and hence ri's that will satisfy the mass balance equations.

By definition, one has in stezdy-state that

Q
= =T, +e =1u, +d, = r.
D. i i i i 1
i
where
di = mass flow rate to an cxogeneous
sirk from node i (i = 1,...,n).
ei = mass flow rate into node 1 from

an exogenccus source. (i = 1,..,n)
u., = non-ncgative mass flow ratce out of
node i to other nodes in the
network., (i = 1,....n)

ey . S G s .
Although the average throush puts {Tjs must eXist it the svsten
has a steady state, they do net necessarily represent parameters
explicit in the fornulation of the time dependent physical dynaidcs
of the materials balunce equatiens.  They may be used o censtruct

steadv-state equntions of balince 7o U507 diflerantial eaui-

tions governing the temporal dyvnunics of the svster,  In this casce,



one may specify independently certain directional coefficientc

which are needed in order to solve for the ir{% which yields
rats inforrmziion (not accumulations). Let
= - 4
P = [py;l ()
wvherc

p.. = fraction of mass leaving node

1J i that arrives at node 3.

(i,j = 1;"';11)'
In some applications there may be limits upon the rates at which
mass can enter or leave or both enter and leave a node. Let
a. = maximum allowable arrival rate of nass (5)

i . . .
into node i from combined sources.
i=1,...,m

a = minimum allowable arrival rate of mass 6)
into node i from combined sources.
i-=1,..,n

B} = maximum allowable departure rate of (7)

miss from node 1.

(i=1,...,n)

b. = minimum allowablc departure rate of
mass from nodc i.

i=(1,...,n

Notec that a; =u; re = 2. and bi =u, +d, = b

i i i i i-1,..,n)

For the i-th node, therefore, one has under steady-state condition

that

M
E u., p,. +e =u +d (8)

or, since

Q; = (v, + 4Dy,



j i
or,

Ml
Q M

E; ~l-p.. - S d.p.. te, - Q1 B
Dj ji —jrji 1 5= 0

j=1 j=1 1

(i=1,..,n)

Equations (9) can be written as a singlen xn matrix equation

in cases where the pij's are specified in advance.
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wvhere R is the n x 1 column vector of ratiecs Q7D amd € is the
i

column vestor on the right hand side. 11 ene s dealing with o

closad system in which the right hond side of (100 s identicaliy

zero then cquation (1) is replaced by
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where

Q = total mass conserved in system.
In applications involving materials handling systems or

certain traffic systems the pij's may be fixed in advance or

it may be clear as to which combinations of pij's arc permissible.

In other applications where one is dealing with large volumes
of a mass such as lake water or liquid moving through a porous

nedium the pii’s may be unknown but could be determined as part

2
of the solution in which case one is dealing with n”+n unknowns.

The number of equations in this case depends upon boundary
conditions governing the pij and other physical consideraticns.
This paper deals only with the case in which the pii’S are

known or can be specified paramectically.

(an



RANK OF THE P-MATRIX

It is casy to show that the n-th row of the P matrix
equation (10) is a lincar combination of the first (n-1)
the result being that its rank is at most an-1. Thus, at

one rate 95_(for some k) must be specified independently
D

in
TOWS
lcust

imply-

. k . . . : .
ing that miny different internal circulation rates arc possiblc

while the external inputs {E?? and outputs {?i% remain fixed.

However, g§_= T, may be limited by restrictions (5), (6), and

D
7), i.e. X
[ b S =u v d = XS nin (7, 5
max 1o, ag, byl = rn = uy k'q"“”’ s byl
and o = u, . (k =1,..,n)

k

Consider the three node network specified below. Assume an

exogeneous source at node 1 with e, = 100 and an exogencous

1

sink at node 3 with d3 = 100, All other Ci and di are assumed

to be zero.

Cac has for the balance eguation

r - ’ o) ]
1 21 r | { 100 « = - 100
-1 7 511 % : 3 :
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b 1 1 - ;
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Upon solving (13) one finds

= 22 3
Ql 22+ 37 Q3

Q, = -46 + .60 Qg (14)
-~
In other words the system has one degrec of freedom but Q3 is
constrained by inequality (12). Suppose further that
= b. = a =b, + o ¢ es t
ag b 0 and ay bk so that (12) reduc o}
oSu, +100 =93
3 i
<
0o =
Y3
where upon
? o
Q3 = 300.
If Q3 = 300 then u, = O meaning that node 3 acts as a sink rela-
Dol
tive to internal circulations within the system. If one sets Q.
> 300 then u; 70 and node 3 no longer behaves as a sink. It
is also clear that increasing Q3 also increases the internal flow
rate between otiher nodes.
It is apparent that provided the P matrix canrot be block-
diagonalized to the Torm
~— -
Vd
N -
N .
= O (1
\

———
)



meaning that all nodes "compunicate,” the rank of P is n-1. 1f,
in contrast, onc can subdivide P as shown in (15) cone is dealing
with independent subnetworkhs vhich may be analyvzed scparatcely.
The rank of P in this case isn-4% where { is the number of blocks

on the diagonal.

MEAN DELAY IN THE SYSTEM

The mean delay (mean residence time) at a node is related
to mean flow across the node and node volume according to
equation (3). The values of any two of the quantities u,,

Qi’ or Di determines the third which holds for deterministic
systems and for many stochastic systems [1, 2]. For present
purposes it is assumed that mean delays at nodes are known or can
be computed once the ui’s are known. The mean delay of an
clement of mass in the system can now be computed when the rule
governing the transfer of mass among ncdes is known. Little
more can be said unless one assumes that mass clements move
within the system at random so that at a particular node each
element has an cqual chance of being selected to move in g
particular "dircction.'" In this casc the thecry of first
passage times for Markov chains applices and the mean delay

of a unit in the system can again be coaputed in a straight

forward marner.  The computaticons ave reviewed below,

Let
Mi = mean deray enceuntered byoaonass
7 eleneat noving frow nade i to
node . (1,1 = 1,..,n; i£))



The value ef Mij can be determined in the following wazy which
is a straight forward application of the thecory of first passage
times for Markov chuins. Denote by PT the transpose of the P
matrix. Let j denote the node to which a wmass element is to be
transported. Redefine the pji's corresponding to node i as (1,
0, ---, 0) so that once a mass eclement enters node j it remains
there. Reposition this vector as the first row in PT so that the

revised form of PT, call it P’ is

[ 1 0 --- 0 ]
T = | p P —=- P (17)
= 21 22 2N
pnl PnZ 77 nn
L .

The eonly requirement on the order of the remaining rows
and columns is that their order agree, That is, row order must
equul colunn order. (In many cascs Py = 0). Denote by S the
subnatrix obtained from ﬁT by deleting the first row and first

column. let [mij] be the mat—ix defired by

[mij] = [I - §] (1s)
Then
2
M., = m,, D (m
1] L 12
LAj

Iasmpie. lontinuing with the previous example, and assuning

thut p“a(‘, set j = 3 so that

1o



and

Then

and

The mean delay chcoun

node

3 from nole i is

3 )
3 r 1 0
1{1/2 0
2{1/2 1/2
4] lfj
S =
i/2 0
1
I-5-=
-1/2
473
- 537! -

Moo=
15 =,
=4
N

therefore

o/3

tered by

4 mass element in ye

~-1/2

(20)

(21)



Similarly

Mys = myy D+ myy Dy =
2 4 10
=z l*r3-2=3

MULTIPLE PRIORITY SYSTEMS

Multiple priority systems occur when mass clements are tagyecd
in a way which identifies them by the mean delay they encountered
at a node. Whenever one '"species' takes precedence over another
at a given node in such a way that it encounters a shorter time
delay, it is said to have a higher priority than the cother spccics.
The only complicating factor entering into the anualysis of the
multiple priority system is the computationAof the mean delc s for
the lower priority elements since they now depend upon the mean

delayvs of the higher priority elements.

BALANCE IN A 2-PRICRTTY SYSTEM

It is assumed that the network contains twe "speclies'" of muss
which tlow through nodes and over links in the manner described
above.  The didference here is that one species takes precedent
over the other in fiowing through any node. The "low priority"
srocies Tlows through a nade only when there 1s no “high priority"
pass at that aede. Denoting the high and low priorities by 1 and

2, respectively, one dotines the follewing swvibols.



Let
D]i = pean delay at node 1 of pricrity 1 mass clencnts (26)
(i=1,...,n).
D2i = mean delay at node i of pricrity 2 mass elenents (27)
i=1,...,n

Qli = quantity of priority 1 mass present at node | (28)

under equilibrium conditions

(i=1,...,n)

Q2i = quantity of priority 2 mass present at node i (29

under equilibrium conditions

i=1,...,n)

Further, let

vy; and v, denote the average output rates of mnss of pricritics

1 and 2, respectively, from node 1 (i = 1,..,n).

Let
Pi;: © proportion of priority 1 muss lcaving nede i
i
that is directed to nole i,
Poy; = propartion of priority 2 leaving nede i

b, . M)



where

Eki = maxirum allowuble departure rate of k-th

priority mass from i-th ncde.

The ceefficicnt Pri always lies between 0 and 1 and is called the
loa? fzelzp for mass of priority k and the i-th node. This means
the priority may change for a fixed mass element at different

nodes.

The following assumptions are made concerning the behavior

of the system containing mass of both high and low priority.

(1) The analysis with respect to priority ] mass remains
unchanged from that given above since it does not
recognize the existence of priority 2 mass.

(2) If priority 1 mass is removed from the system, then
priority 2 mass is the only priority present and the
mass balance analysis, is the same as that given above,
In this case, the D21 can be independently specified
sinte there is, in fact, a single priority to be
anzlyzed.  In such a circunstance denote D, by the symbol

21

“

Uii whore

Dzi = mean delay of yriority 2 mass at node i
when all pricerity 1 mass is absent from
the system.
{3) When Dot pricrities of mass are present the mass balance
cauativns fer prievity 2 follew those of priority 1 after

the delays D’i have been determineld.

14

(31)



The delay of 4 priority 2 mass element at a node is the sum

of 1) its delay D;i when no pricrity 1 elements ure at node i;

2) the delay Dli

due to the presence of priority 1 muass elements;

3) an additional delay generated by the arrival of priority 1 nuss

elements during the intervals D§i and ”11 which is

* .
Pri (D35 + Dyyds

an additional delay generated by the arrival of priority 1 mass
elements during the interval defined by ¢

1i

2 * .
Pry 035 *+ Dyyds

4) and so on.

When sumied, one

* L .
(DZi + Dli) which is

Note that all quantities cn the wight hand side of (32} avre known.

Pli is obtained from the ezuntion

D T,
Ql] li i
D). = —=— = ——
li - -
b, b
1i 1i
Anequation enc e cus te D0 Dok selved dn vhich all para o
and variables pertoin to pricrizy-2 mons, Uron solution cne ob

the ratios r,. =
i

J 0



Frow (32) onc obtains D2, and thus Q’i can be computed. The
1 <
essentiul point is that the mean delays for lower priorities cannot

be specified independently as in the case of the priority-1 elements.

BALANCE IN A K-PRIORITY SYSTEM

One can now analy:ze closed or open networks having k priorities
of mass units. Assuming that lower priority units do not affect
the behavior of higher priority units, one solves for (Qll,...,an),
(Q21,...,Q2n) serens (le,...,an) respectively. The solution
of the mass balance cquations for the i-th priority requires the
previous (i-1) solutions. Definitions that correspond to (28}
through (30) arc made for cach priority. The only real complexity
that enters is the determination of Dji which is the delay of a

mass elenent of the j-th pricrity at node i, One can show that

Uji is given by the formula
. = D*, . . cee . ).
Djl D]l * D)—l,] * Tyt 111 *
+°° (e« -)an’f.+l) + + D + D 1 =
A1 j-1,1 ji j-1,1 21 11
S [D*. + D + ...+ D .+ D ]
1—33_ 11 ji-1,1 21 11 (34
where
j-1,i TP TPt HLETS

16



BIBLIOCERAPHY

[1] Schrage, L., "An Alternative Proof of a Conservation Luw
ac

For the Queue G/G/1, Operations Kescarch (181, 185-187,

(1970).

[2] Little, J. D. C., "A Proof of the Formula I = AW,' Operations

Research (9), 383-387 (1961).

17



